YouDACC: the Youtube Dialectal Arabic Comment Corpus

نویسندگان

  • Ahmed Salama
  • Houda Bouamor
  • Behrang Mohit
  • Kemal Oflazer
چکیده

In the Arab world, while Modern Standard Arabic is commonly used in formal written context, on sites like Youtube, people are increasingly using Dialectal Arabic, the language for everyday use to comment on a video and interact with the community. These user-contributed comments along with the video and user attributes, offer a rich source of multi-dialectal Arabic sentences and expressions from different countries in the Arab world. This paper presents YOUDACC, an automatically annotated large-scale multi-dialectal Arabic corpus collected from user comments on Youtube videos. Our corpus covers different groups of dialects: Egyptian (EG), Gulf (GU), Iraqi (IQ), Maghrebi (MG) and Levantine (LV). We perform an empirical analysis on the crawled corpus and demonstrate that our location-based proposed method is effective for the task of dialect labeling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

YouDACC: the Youtube Dialectal Arabic Commentary Corpus

In the Arab world, while Modern Standard Arabic is commonly used in formal written context, on sites like Youtube, people are increasingly using Dialectal Arabic, the language for everyday use to comment on a video and interact with the community. These user-contributed comments along with the video and user attributes, offer a rich source of multi-dialectal Arabic sentences and expressions fro...

متن کامل

Toward a Web-based Speech Corpus for Algerian Arabic Dialectal Varieties

The success of machine learning for automatic speech processing has raised the need for large scale datasets. However, collecting such data is often a challenging task as it implies significant investment involving time and money cost. In this paper, we devise a recipe for building largescale Speech Corpora by harnessing Web resources namely YouTube, other Social Media, Online Radio and TV. We ...

متن کامل

Cross-Dialectal Data Transferring for Gaussian Mixture Model Training in Arabic Speech Recognition

Dialectal Arabic speech recognition is a difficult problem and is relatively less studied. In this paper, we propose a cross-dialectal Gaussian mixture model training criteria to transfer knowledge from one domain to the other by data sharing. Specifically, phone classification experiments on West Point Modern Standard Arabic Speech corpus and Babylon Levantine Arabic Speech corpus demonstrate ...

متن کامل

Using Twitter to Collect a Multi-Dialectal Corpus of Arabic

This paper describes the collection and classification of a multi-dialectal corpus of Arabic based on the geographical information of tweets. We mapped information of user locations to one of the Arab countries, and extracted tweets that have dialectal word(s). Manual evaluation of the extracted corpus shows that the accuracy of assignment of tweets to some countries (like Saudi Arabia and Egyp...

متن کامل

A Multi-Dialect, Multi-Genre Corpus of Informal Written Arabic

This paper presents a multi-dialect, multi-genre, human annotated corpus of dialectal Arabic with data obtained from both online newspaper commentary and Twitter. Most Arabic corpora are small and focus on Modern Standard Arabic (MSA). There has been recent interest, however, in the construction of dialectal Arabic corpora (Zaidan and Callison-Burch, 2011a; Al-Sabbagh and Girju, 2012). This wor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014